Neuroinflammation and neuronal apoptosis are central pathogenic consequences associated with Alzheimer's Disease (AD) and Parkinson's Disease (PD). Limonin (LM), a tetracyclic triterpenoid available in citrus fruits, has anti-tumor, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective actions. LM derivative, V-A-4 emerged as a potential neuroprotective drug due to their ability to target multiple molecular pathways intertwined with neuroinflammation and neuronal apoptosis. To date, the treatment of AD and PD is not successful even though the understanding of the mechanism of neuroinflammation and neuronal apoptosis is vast in the literature. Thus, there is an urgent need to identify novel neuroprotective drugs that could target the multiple molecular pathways associated with neuroinflammation and neuronal apoptosis. The various online databases (Google scholar, Pubmed, Scopus) were searched via keywords: limonin, limonin derivatives and neuroprotection. This review highlights the multifunctional nature of LM and derivatives in combating neuroinflammation and neuronal apoptosis by stimulating PI3K/AKT and downregulating TLR4/NF-κB critical pathways. By intervening in the secretion of NO and TNF-α from glial cells, V-A-4 attenuates the damaging cascade of neuroinflammation by suppressing IKK-α and IKK-β. Furthermore, V-A-4 demonstrates its versatility by suppressing the manifestation of miR-146a and miR-155, both intimately linked to neuroinflammation, this review summarized the activities of LM and its derivatives against AD and PD, with a special focus on V-A-4 as an effective neuroprotective drug. V-A-4's ability to stimulate PI3K/AKT signaling further underscores its neuroprotective effect in combating AD and PD. More in-vitro cell line studies are needed to develop V-A-4 as an upcoming neuroprotective compound.