Staphylococcal enterotoxin C2 (SEC2), a classical representative of superantigens, activates T cells that produce massive cytokines. This characteristic makes SEC2 a promising candidate drug for cancer immunotherapy. Previous study showed that ST-4, a SEC2 mutant, enhanced recognition of mouse T-cell receptor Vβ regions, and activated the increased number of T cells that produced more cytokines. However, the underlying molecular mechanism for stimulation of human peripheral blood mononuclear cells (PBMCs) and antitumor effect on human tumor cells remains unknown. Herein, we showed that ST-4 significantly activated TCR Vβ 12, 13A, 14, 15, 17, and 20 CD4+ and CD8+ T cells, which produced substantial amounts of granzyme B and perforin. These cytokines exhibited antitumor effect on K562 cells by promoting apoptosis and inducing S-phase cell cycle arrest. Conversely, the granzyme B inhibitor or perforin inhibitor significantly weakened antitumor effect of ST-4, accompanied by a decrease of cleaved proapoptotic BAX and cytochrome c, and an increase of antiapoptotic BCL2. Taken together, these data suggest that granzyme B and perforin produced by ST-4-activated CD4+ T cells and CD8+ T cells play a pivotal role in inducing K562 cell apoptosis by the mitochondrial apoptotic pathway, and support ST-4 as a potential candidate for cancer immunotherapy.