Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.