Abstract:
Objectives Sintering parameters influence the properties of zirconia. This study examined the effect of altering sintering temperature and time of monochrome and multilayer 5 mol% yttria-partially stabilized zirconia (5Y-PSZ) on flexural strength.
Materials and Methods Three hundred specimens (width × length × thickness = 10 × 20 × 2 mm) were prepared from monolayer (ZX) and multilayer (ZM) 5Y-PSZ and randomly sintered at decreasing (TD: 1,450°C), regular (TR: 1,500°C), and increasing (TI: 1,550°C) sintering temperature, with extremely short (HE: 10 minutes), ultrashort (HU: 15 minutes), short (HS: 30 minutes), and regular (HR: 135 minutes) sintering time (n = 15/group). The precrack was induced on the tension side before testing for flexural strength (σ).
Statistical Analysis Analysis of variance and Tukey's test were used for significant differences of σ at p < 0.05. The microstructure and crystalline (monoclinic; m, tetragonal; t, cubic; c) phase were evaluated by scanning electron microscope (SEM) and X-ray diffractometer (XRD).
Results ZXTIHS indicated the highest σ for ZX (315.81 ± 18.91 MPa), whereas ZMTIHS indicated the highest σ for ZM (335.21 ± 36.18 MPa). There was no significant difference for σ between ZX and ZM (p > 0.05). Sintering zirconia at TI or HR indicated significantly higher σ than sintering at TD or TR or with HS, HE, or HU for both ZX and ZM (p < 0.05). There was no significant difference for σ between TRHR and TIHS, TIHU, and TIHE (p > 0.05). SEM indicated intergranular and transgranular fractures. XRD revealed predominately c- and t-phases and minor amounts of m-phase.
Conclusion Increasing sintered temperature with decreasing time offers acceptable strength to regular sintering. Raising sintering temperature with decreasing time is suggested to facilitate chairside restorative reconstruction.