The use of serologically detectable male (SDM; also called H-Y) antigens to identify male embryos may be limited by the source of anti-SDM antibody. In the present study, novel anti-SDM B9-Fab recombinant clones (obtained by chain shuffling of an A8 original clone) were used to detect SDM antigens on murine embryos. Murine morulae and blastocysts (n=138) were flushed from the oviducts of Kunming mice and incubated with anti-SDM B9-Fab for 30 min at 37°C. With an indirect immunofluorescence assay, the membrane and inner cell mass had bright green fluorescence (presumptive males). Overall, 43.5% (60/138) were classified as presumptive males and 56.5% (78/138) as presumptive females, with 85.0 and 88.5% of these, respectively, confirmed as correct predictions (based on PCR analysis of a male-specific [Sry] sequence). We concluded that the anti-SDM B9-Fab molecule had potential for non-invasive, technically simple immunological sexing of mammalian embryos.