BACKGROUND:QingChang-XiaoPi Decoction (QCXPY), a Chinese herbal prescription, has been employed in the treatment of ulcerative colitis (UC) in China. However, its molecular mechanism of action in UC remains unclear.
PURPOSE:To elucidate the therapeutic effects of QCXPY against UC and reveal its mechanism of action.
STUDY DESIGN:We conducted a single-arm observation to evaluate the clinical efficacy of QCXPY in patients with mild-to-moderate UC. Inclusion and exclusion criteria were established to ensure the eligibility of participants, with a focus on excluding patients with specific conditions or complications that could confound the results.
METHODS:The expression of inflammatory factors in patients' serum was detected using a Luminex assay. The main components of QCXPY were identified using UHPLC-Q-TOF-MS. Network pharmacology was employed to predict potential therapeutic targets and their mechanisms of action. The efficacy of QCXPY was evaluated using a dextran sulfate sodium (DSS)-induced mouse model. Disease activity index (DAI), histopathological score, cytokine detection by ELISA, T-helper 17 (Th17) cell proportion by flow cytometry, expression of the IL-23/IL-17 axis, and changes in the levels of its downstream effectors were detected by immunohistochemistry, immunofluorescence, and western blotting.
RESULTS:QCXPY could alleviate the symptoms of diarrhea, abdominal pain, abdominal distension, and purulent stool in patients with mild-to-moderate UC. Moreover, it reduced the expression of IL-6, IL-17, and IL-23 in serum; alleviated DSS-induced experimental colitis in mice; reduced DAI, pathological scores, and the expressions of IL-6, IL-17, and IL-23 in colon tissue; and decreased the proportion of pathogenic Th17 cells and the expression of STAT3 and phospho-STAT3.
CONCLUSION:This study confirmed for the first time that QCXPY could alleviate intestinal symptoms, reduce the levels of serum inflammatory factors, and improve the quality of life of patients with mild-to-moderate UC. Its mechanism of action may involve reducing the secretion of inflammatory cytokines, moderating the pathogenicity of Th17 cells, and inhibiting STAT3 phosphorylation, thereby alleviating intestinal inflammation in UC.