Carotenoids are naturally occurring pigments found in plants and certain microorganisms. Some carotenoids act as precursors to vitamin A, which is essential for various health aspects, including vision, immune function, and skin health. Carotenoids, including α-carotene, β-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin, are known to reduce the risk of age-related diseases and promote healthy aging. This study examines the relationship between dietary carotenoid levels and biological age. This study utilized data from the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018, and 19,280 participants were included. The Phenotypic Age (PhenoAge) was used to measure biological age, and the Klemera-Doubal Method (KDM) was employed in sensitivity analyses. Biological age acceleration was determined by calculating the residuals of PhenoAge or KDM after regressing them against chronological age. Weighted multivariate linear and logistic regressions were conducted to examine the relationship between carotenoids and biological age acceleration. Additionally, restricted cubic spline regression, subgroup analysis, interaction analysis, and sensitivity analyses were employed for further examination. Both linear regression and logistic regression analyses indicated that participants with higher carotenoid intake exhibited lower rates of phenotypic age acceleration, with α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin, and lycopene all demonstrating protective effects. Restricted cubic spline regression indicates non-linear associations between carotenoid levels and phenotypic age acceleration. Subgroup analyses revealed that younger participants, females, and individuals with hypertension or diabetes benefited more from higher carotenoid intake. Sensitivity analyses further confirmed the robustness of inverse relationship. The WQS analysis identifies β-carotene and β-cryptoxanthin as the most influential compounds. Higher dietary intake of carotenoids is associated with reduced biological age acceleration, underscoring their protective role against aging. Further longitudinal studies are needed to establish causal relationships and explore the underlying mechanisms of carotenoid benefits on aging.