ETHNOPHARMACOLOGICAL RELEVANCEAging contributes to various pathologies, including kidney injury, but the therapeutic potential of natural drugs in these contexts remains inadequately assessed. The roots of Panax ginseng C.A. Meyer, a widely used traditional Chinese medicine, are reputed for their anti-aging properties and life-prolonging effects, yet their specific medicinal components and mechanisms of action require further exploration.AIM OF STUDYThis study compared the pharmacological effects of ginsenoside Rg2 (Rg2), 20(S)-protopanaxatriol (PPT) and arginyl-fructosyl glucose (AFG) on aging-related kidney injury, aiming to identify their relative efficacy and potential mechanisms of action.MATERIALS AND METHODSSAMP8 mice, which exhibit an accelerated aging phenotype, were treated daily with Rg2, PPT or AFG for eight weeks. Kidney function markers were evaluated, and histopathological analysis was performed. Additionally, mRNA and protein expression levels were analyzed using Real-time qPCR and western blot methods to investigate the involvement of IGF-1/mTOR, PI3K/AKT and MAPK/ERK signaling pathways.RESULTSRg2, PPT and AFG all significantly improved kidney function and aging markers, ameliorated histological changes, and exhibited anti-inflammatory, antioxidant and anti-apoptotic effects. Among all compounds, Rg2 had the most significant effect on basic renal function indicators. In addition, Rg2 and PPT significantly affected AMPK family proteins, mTOR and IGF-1 transcription factors, highlighting their regulatory activities through insulin/IGF-1 and mTOR signaling pathways, and AFG significantly regulates PI3K/AKT signaling pathways.CONCLUSIONThe findings indicate that Rg2, PPT and AFG may prevent aging-related kidney diseases by targeting IGF-1/mTOR and PI3K/AKT signaling pathway. These results highlight their potential for further investigation to treat aging-related kidney diseases.