MucoCept is a biotherapeutic for prevention of HIV-1 infection in women and contains a human, vaginal Lactobacillus jensenii that has been genetically enhanced to express the HIV-1 entry inhibitor, modified cyanovirin-N (mCV-N). The objective of this study was to develop a solid vaginal dosage form that supports sustained vaginal colonization of the MucoCept Lactobacillus at levels previously shown, with freshly prepared cultures, to protect macaques from SHIV infection and to test this formulation in a macaque vaginal colonization model. Vaginally disintegrating tablets were prepared by lyophilizing the formulated bacteria in tablet-shaped molds, then packaging in foil pouches with desiccant. Disintegration time, potency and stability of the tablets were assessed. For colonization, non-synchronized macaques were dosed vaginally with either one tablet or five tablets delivered over five days. Vaginal samples were obtained at three, 14, and 21 days post-dosing and cultured to determine Lactobacillus colonization levels. To confirm identity of the MucoCept Lactobacillus strain, genomic DNA was extracted from samples on days 14 and 21 and a strain-specific PCR was performed. Supernatants from bacteria were tested for the presence of the mCV-N protein by Western blot. The tablets were easy to handle, disintegrated within two minutes, potent (5.7x1011 CFU/g), and stable at 4°C and 25°C. Vaginal administration of the tablets to macaques resulted in colonization of the MucoCept Lactobacillus in 66% of macaques at 14 days post-dosing and 83% after 21 days. There was no significant difference in colonization levels for the one or five tablet dosing regimens (p=0.88 Day 14, p=0.99 Day 21). Strain-specific PCR confirmed the presence of the bacteria even in culture-negative macaques. Finally, the presence of mCV-N protein was confirmed by Western blot analysis using a specific anti-mCV-N antibody.