The ErbB receptors, such as ErbB-1 and ErbB-2, have been intensely pursued as targets for cancer therapeutics. Although initially efficacious in a subset of patients, drugs targeting these receptors led invariably to resistance, which is often associated with reactivation of the ErbB-3-PI3K-Akt signaling. This may be overcome by an ErbB-3 ligand that abrogates receptor-mediated signaling. Toward this end, we have generated a mouse monoclonal antibody, MP-RM-1, against the extracellular domain (ECD) of ErbB-3 receptor. Assessment of human tumor cell lines, as well as early passage tumor cells revealed that MP-RM-1 effectively inhibited both NRG-1β-dependent and -independent ErbB-3 activation. The antagonizing effect of MP-RM-1 was of non-competitive type, as binding of [(125)I]-labeled NRG-1β to ErbB-3 was not influenced by the antibody. MP-RM-1 treatment led, in most instances, to decreased ErbB-3 expression. In addition, MP-RM-1 was able to inhibit the colony formation ability of tumor cells and tumor growth in two human tumor xenograft nude mouse models. Treatment with the antibody was associated with a decreased ErbB-3 and Akt phosphorylation and ErbB-3 expression in the excised tumor tissue. Collectively, these results indicate that MP-RM-1 has the potential to interfere with signaling by ErbB-3 and reinforce the notion that ErbB-3 could be a key target in cancer-drug design.