AIMTo study the effect of AMP579 and adenosine on potassium ionic (K+) or sodium ionic (Na+) channels and to elucidate ionic mechanisms underlying negative inotropic and antiarrhythmic effects of AMP579 and adenosine.METHODSIonic channel currents of rat and guinea pig ventricular myocytes were recorded by patch clamp technique in whole-cell configuration.RESULTSAdenosine showed a stronger activating effect on transient outward K+ current (I(to)) than AMP579, EC50 of adenosine and AMP579 were 2.33 and 8. 32 micromol x L(-1), respectively (P < 0.05). An adenosine A1 receptor blocker, 1,3-dipropyl-8-cyclopentylxanthine (PD116948), can abolish the effects of AMP579 and adenosine on I(to), demonstrating that the effect is mediated by adenosine A1 receptor. Adenosine exerted a more obvious inhibitory effect on delayed rectifier K+ current (IK) than AMP579. IC50 of adenosine and AMP579 were 1.21 and 2.31 micromol x L(-1), respectively (P < 0.05). AMP579 had a more powerful inhibitory effect on inward rectifier K+ current (IK1) than adenosine. IC50 of AMP579 and adenosine were 4.15 and 20.7 micromol x L(-1), repectively (P < 0.01). AMP579 and adenosine exerted a similar inhibitory effect on fast inward Na+ current (INA), IC50 of AMP579 and adenosine were 9.46 and 6.23 micromol x L(-1), respectively (P > 0.05).CONCLUSIONAdenosine showed a stronger activating effect on I(to) than AMP579, however, the mechanism of AMP579 and adenosine activating I(to) was mediated by adenosine A1 receptor. AMP579 has a more powerful inhibitory effect on IK1, and less inhibitory effect on IK than adenosine. Both drugs have a similar inhibitory effect on INa. The negative inotropic and antiarrhythmic effects are related to these ionic mechanisms.