New York, Feb. 05, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Gene Therapy Market by Therapeutic Approach, Type of Gene Therapy, Type of Vectors Used, Therapeutic Areas, Route of Administration, and Key Geographical Regions: Industry Trends and Global Forecasts, 2020-2030" - Considering the current pace of research and product development activity in this field, experts believe that the number of clinical research initiatives involving gene therapies are likely to grow by 17% annually. In this context, the USFDA released a notification, mentioning that it now expects to receive twice as many gene therapy applications each year, starting 2020. Despite the ongoing pandemic, it is worth highlighting that gene therapy companies raised approximately USD 5.5 billion in capital investments, in 2020 alone. This is indicative of the promising therapeutic potential of this emerging class of pharmacological interventions, which has led investors to bet heavily on the success of different gene therapy candidates in the long term. Several technology platforms are currently available for discovery and development of various types of gene therapies. In fact, advances in bioanalytical methods (such as genome sequencing), and genome editing and manipulation technologies (such as molecular switches), have enabled the development of novel therapy development tools / platforms. In fact, technology licensing is a lucrative source of income for stakeholders in this industry, particularly for those with proprietary gene editing platforms. Given the growing demand for interventions that focus on the amelioration of the underlying (genetic) causes of diseases, it is expected that the gene therapy pipeline will continue to steadily expand. Moreover, promising results from ongoing clinical research initiatives are likely to bring in more investments to support therapy product development initiatives in this domain. Therefore, we are led to believe that the global gene therapy market is poised to witness significant growth in the foreseen future. SCOPE OF THE REPORT The “Gene Therapy Market (4th Edition) by Therapeutic Approach (Gene Augmentation, Oncolytic Viral Therapy, Immunotherapy and Others), Type of Gene Therapy (Ex vivo and In vivo), Type of Vectors used (Adeno Associated Virus, Adenovirus, Herpes Simplex Virus, Lentivirus, Plasmid DNA, Retrovirus and Others), Target Therapeutic Areas (Autoimmune Disorders, Cardiovascular Diseases, Dermatological Disorders, Genetic Disorders, Hematological Disorders, Metabolic Disorders, Muscle-related Diseases, Oncological Disorders, Ophthalmic Diseases and Others), Route of Administration (Intraarticular, Intracerebellar, Intradermal, Intramuscular, Intratumoral, Intravenous, Intravesical, Intravitreal, Subretinal and Others), and Key Geographical Regions (US, EU5 and rest of the world): Industry Trends and Global Forecasts, 2020-2030” report features an extensive study of the current market landscape of gene therapies, primarily focusing on gene augmentation-based therapies, oncolytic viral therapies, immunotherapies and gene editing therapies. The study also features an elaborate discussion on the future potential of this evolving market. Amongst other elements, the report features: - A detailed review of the overall market landscape of gene therapies and gene editing therapies, including information on phase of development (marketed, clinical, preclinical and discovery) of pipeline candidates, key therapeutic areas (autoimmune disorders, cardiovascular diseases, dermatological disorders, genetic disorders, hematological disorders, immunological disorders, infectious diseases, inflammatory disorders, liver diseases, metabolic disorders, muscle-related diseases, nervous system disorders, oncological disorders, ophthalmic diseases and others), target disease indication(s), type of vector used, type of gene, therapeutic approach (gene augmentation, oncolytic viral therapy and others), type of gene therapy (ex vivo and in vivo), route of administration and special drug designation(s) awarded (if any). - A detailed review of the players engaged in the development of gene therapies, along with information on their year of establishment, company size, location of headquarters, regional landscape and key players engaged in this domain. - An elaborate discussion on the various types of viral and non-viral vectors, along with information on design, manufacturing requirements, advantages and limitations of currently available gene delivery vectors. - A discussion on the regulatory landscape related to gene therapies across various geographies, namely North America (the US and Canada), Europe and Asia-Pacific (Australia, China, Hong Kong, Japan and South Korea), providing details related to the various challenges associated with obtaining reimbursements for gene therapies. - Detailed profiles of marketed and late stage (phase II/III and above) gene therapies, including development timeline of the therapy, information on the current development status, mechanism of action, affiliated technology, strength of patent portfolio, dosage and manufacturing details, as well as details related to the developer company. - An elaborate discussion on the various commercialization strategies that can be adopted by drug developers across different stages of therapy development, including prior to drug launch, at / during drug launch and post-marketing. - A review of the various emerging technologies and therapy development platforms that are being used to design and manufacture gene therapies, featuring detailed profiles of technologies that were / are being used for the development of four or more products / product candidates. - An in-depth analysis of various patents that have been filed / granted related to gene therapies and gene editing therapies, since 2016. The analysis assesses several relevant parameters associated with the patents, including type of patent (granted patents, patent applications and others), publication year, regional applicability, CPC symbols, emerging focus areas, leading industry players (in terms of the number of patents filed / granted), and patent valuation. - A detailed analysis of the various mergers and acquisitions that have taken place within this domain, during the period 2015-2020, based on several relevant parameters, such as year of agreement, type of deal, geographical location of the companies involved, key value drivers, highest phase of development of the acquired company’ product and target therapeutic area. - An analysis of the investments made at various stages of development in companies that are focused in this area, between 2015-2020, including seed financing, venture capital financing, IPOs, secondary offerings, debt financing, grants and other equity offerings. - A detailed geographical clinical trial analysis of completed, ongoing and planned studies of numerous gene therapies, based on various relevant parameters, such as trial registration year, trial status, trial phase, target therapeutic area, geography, type of sponsor, prominent treatment sites and enrolled patient population. - An analysis of the various factors that are likely to influence the pricing of gene therapies, featuring different models / approaches that may be adopted by manufacturers to decide the prices of these therapies. - An analysis of the big biopharma players engaged in this domain, featuring a heat map based on parameters, such as number of gene therapies under development, funding information, partnership activity and strength of patent portfolio. - An informed estimate of the annual demand for gene therapies, taking into account the marketed gene-based therapies and clinical studies evaluating gene therapies; the analysis also takes into consideration various relevant parameters, such as target patient population, dosing frequency and dose strength. - A case study on the prevalent and emerging trends related to vector manufacturing, along with information on companies offering contract services for manufacturing vectors. The study also includes a detailed discussion on the manufacturing processes associated with various types of vectors. - A discussion on the various operating models adopted by gene therapy developers for supply chain management, highlighting the stakeholders involved, factors affecting the supply of therapeutic products and challenges encountered by developers across the different stages of the gene therapy supply chain. One of the key objectives of the report was to estimate the existing market size and the future opportunity associated with gene therapies, for the next decade. Based on multiple parameters, such as target patient population, likely adoption rates and expected pricing, we have provided informed estimates on the evolution of the market for the period 2020-2030. The report also features the likely distribution of the current and forecasted opportunity across [A] therapeutic approach (gene augmentation, oncolytic viral therapy, immunotherapy and others), [B] type of gene therapy (ex vivo and in vivo), [C] type of vectors used (adeno associated virus, adenovirus, herpes simplex virus, lentivirus, plasmid DNA, retrovirus and others), [D] target therapeutic areas (autoimmune disorders, cardiovascular diseases, dermatological disorders, genetic disorders, hematological disorders, metabolic disorders, muscle-related diseases, oncological disorders, ophthalmic diseases and others), [E] route of administration (intraarticular, intracerebellar, intradermal, intramuscular, intratumoral, intravenous, intravesical, intravitreal, subretinal and others), and [F] key geographical regions (US, EU5 and rest of the world). In order to account for future uncertainties and to add robustness to our model, we have provided three market forecast scenarios, namely conservative, base and optimistic scenarios, representing different tracks of the industry’s growth. The opinions and insights presented in this study were influenced by discussions conducted with multiple stakeholders in this domain. The report features detailed transcripts of interviews held with the following individuals: - Adam Rogers (CEO, Hemera Biosciences) - Al Hawkins (CEO, Milo Biotechnology) - Buel Dan Rodgers (Founder & CEO, AAVogen) - Christopher Reinhard (CEO and Chairman, Gene Therapeutics (previously known as Cardium Therapeutics)) - Michael Triplett (CEO, Myonexus Therapeutics) - Robert Jan Lamers (CEO, Arthrogen) - Ryo Kubota (CEO, Chairman & President, Acucela) - Tom Wilton (CBO, LogicBio Therapeutics) - Jeffrey Hung (CCO, Vigene Biosciences) - Cedric Szpirer (Executive & Scientific Director, Delphi Genetics) - Marco Schmeer (Project Manager) & Tatjana Buchholz (Marketing Manager, PlasmidFactory) - Molly Cameron (Corporate Communications Manager, Orchard Therapeutics) All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified. RESEARCH METHODOLOGY The data presented in this report has been gathered via secondary and primary research. For all our projects, we conduct interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will evolve across different regions and technology segments. Where possible, the available data has been checked for accuracy from multiple sources of information. The secondary sources of information include - Annual reports - Investor presentations - SEC filings - Industry databases - News releases from company websites - Government policy documents - Industry analysts’ views While the focus has been on forecasting the market over the coming decade, the report also provides our independent view on various emerging trends in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market, gathered from various secondary and primary sources of information. KEY QUESTIONS ANSWERED - Who are the leading industry players engaged in the development of gene therapies? - How many gene therapy candidates are present in the current development pipeline? Which key disease indications are targeted by such products? - Which types of vectors are most commonly used for effective delivery of gene therapies? - What are the key regulatory requirements for gene therapy approval, across various geographies? - Which commercialization strategies are most commonly adopted by gene therapy developers, across different stages of development? - What are the different pricing models and reimbursement strategies currently being adopted for gene therapies? - What are the various technology platforms that are either available in the market or are being designed for the development of gene therapies? - Who are the key CMOs / CDMOs engaged in supplying viral / plasmid vectors for gene therapy development? - What are the key value drivers of the merger and acquisition activity in the gene therapy industry? - Who are the key stakeholders that have actively made investments in the gene therapy domain? - Which are the most active trial sites (in terms of number of clinical studies being conducted) related to this domain? - How is the current and future market opportunity likely to be distributed across key market segments? CHAPTER OUTLINES Chapter 2 provides an executive summary of the key insights captured in our research. It offers a high-level view on the current state of the market for gene therapies and its likely evolution in the short-mid term and long term. Chapter 3 provides a general overview of gene therapies, including a discussion on their historical background. It further highlights the different types of gene therapies (namely somatic and germline therapies, and in vivo and ex vivo therapies), potential application areas of such products and route of administration of these therapeutic interventions. In addition, it provides information on the concept of gene editing, highlighting key historical milestones, applications and various techniques used for gene editing. The also chapter includes a discussion on the advantages and disadvantages associated with gene therapies. Further, it features a brief discussion on the ethical and social concerns related to gene therapies, while highlighting future constraints and challenges related to the manufacturing and commercial viability of such product candidates. Chapter 4 provides a general introduction to the various types of viral and non-viral gene delivery vectors. It includes a detailed discussion on the design, manufacturing requirements, advantages and limitations of currently available vectors. Chapter 5 features a detailed discussion on the regulatory landscape related to gene therapies across various geographies, such as the US, Canada, Europe, Australia, China, Hong Kong, Japan and South Korea. Further, it highlights an emerging concept of reimbursement which was recently adopted by multiple gene therapy developers, along with a discussion on several issues associated with reimbursement of gene therapies. Chapter 6 includes information on over 800 gene therapies and gene editing therapies that are currently approved or are in different stages of development. It features a detailed analysis of pipeline molecules, based on several relevant parameters, such as key therapeutic areas (autoimmune disorders, cardiovascular diseases, dermatological disorders, genetic disorders, hematological disorders, immunological disorders, infectious diseases, inflammatory disorders, liver diseases, metabolic disorders, muscle-related diseases, nervous system disorders, oncological disorders, ophthalmic diseases and others), target disease indication(s), phase of development (marketed, clinical, preclinical and discovery), type of vector used, type of gene, type of gene therapy (ex vivo and in vivo), therapeutic approach (gene augmentation, oncolytic viral therapy and others), route of administration and special drug designation (if any). Further, we have presented a grid analysis of gene therapies based on phase of development, therapeutic area and therapeutic approach. Chapter 7 provides a detailed review of the players engaged in the development of gene therapies, along with information on their year of establishment, company size, location of headquarters, regional landscape and key players engaged in this domain. Further, we have presented a logo landscape of product developers in North America, Europe and the Asia-Pacific region on the basis of company size. Chapter 8 provides detailed profiles of marketed gene therapies. Each profile includes information about the innovator company, its product pipeline (focused on gene therapy only), development timeline of the therapy, its mechanism of action, target indication, current status of development, details related to manufacturing, dosage and sales, the company’s patent portfolio and collaborations focused on its gene therapy product / technology. Chapter 9 features an elaborate discussion on the various strategies that can be adopted by therapy developers across key commercialization stages, including prior to drug launch, during drug launch and post-launch. In addition, it presents an in-depth analysis of the key commercialization strategies that have been adopted by developers of gene therapies approved during the period 2015-2020. Chapter 10 provides detailed profiles of drugs that are in advanced stages of clinical development (phase II/III and above). Each drug profile provides information on the current developmental status of the drug, its route of administration, developers, primary target indication, special drug designation received, target gene, dosage, mechanism of action, technology, patent portfolio, clinical trials and collaborations (if any). Chapter 11 provides a list of technology platforms that are either available in the market or in the process of being designed for the development of gene therapies. In addition, it features brief profiles of some of the key technologies. Each profile features details on the various pipeline molecules that have been / are being developed using the technology, its advantages and the partnerships that have been established related to the technology platform. Further, the chapter includes detailed discussions on various novel and innovative technologies, along with brief information about key technology providers. Chapter 12 highlights the potential target indications (segregated by therapeutic areas) that are currently the prime focus of companies developing gene therapies. These include genetic disorders, metabolic disorders, nervous system disorders, oncological disorders and ophthalmic diseases. Chapter 13 provides an overview of the various patents that have been filed / granted in relation to gene therapy and gene editing technologies. It also features a detailed analysis, highlighting the prevalent trends related to type of patent, publication year, regional applicability, CPC symbols, emerging areas and leading industry players (in terms of number of patents filed). In addition, it features a competitive benchmarking analysis of the patent portfolios of leading industry players and patent valuation. For the purpose of this analysis, we have taken into consideration patents that have been filed / granted since 2016. Chapter 14 features a detailed analysis of the various mergers and acquisitions that have taken place within this domain, during the period 2015-2020, based on several relevant parameters, such as year of agreement, type of deal, geographical location of the companies involved, key value drivers, highest phase of development of the acquired company’ product and target therapeutic area. Chapter 15 presents details on various funding instances, investments and grants reported within the gene therapy domain. The chapter includes information on various types of investments (such as venture capital financing, debt financing, grants, capital raised from IPO and subsequent offerings) received by the companies between 2015 and 2020, highlighting the growing interest of the venture capital community and other strategic investors in this market. Chapter 16 presents a detailed, geographical clinical trial analysis of completed, ongoing and planned studies focused on gene therapies, based on various relevant parameters, such as trial registration year, trial status, trial phase, target therapeutic area, geography, type of sponsor, prominent treatment sites and enrolled patient population. Chapter 17 highlights our views on the various factors that may be taken into consideration while deciding the price of a gene therapy. It features discussions on different pricing models / approaches, based on the size of the target population, which a pharmaceutical company may choose to adopt in order to decide the price of its proprietary products. Chapter 18 highlights top big biopharma players engaged in the field of gene therapy, featuring a heat map analysis based on several parameters, including therapeutic area, type of vector used, therapeutic approach and type of gene therapy. Chapter 19 features an informed estimate of the annual demand for gene therapies, taking into account the marketed gene-based therapies and clinical studies evaluating gene therapies; the analysis also takes into consideration various relevant parameters, such as target patient population, dosing frequency and dose strength. Chapter 20 presents an elaborate market forecast analysis, highlighting the future potential of the market till the year 2030. It also includes future sales projections of gene therapies that are either marketed or in advanced stages of clinical development (phase II/III and above). Sales potential and growth opportunity were estimated based on the target patient population, likely adoption rates, existing / future competition from other drug classes and the likely price of products. The chapter also presents a detailed market segmentation on the basis of [A] therapeutic approach (gene augmentation, oncolytic viral therapy, immunotherapy and others), [B] type of gene therapy (ex vivo and in vivo), [C] type of vector used (adeno associated virus, adenovirus, herpes simplex virus, lentivirus, plasmid DNA, retrovirus and others), [D] target therapeutic area (autoimmune disorders, cardiovascular diseases, dermatological disorders, genetic disorders, hematological disorders, metabolic disorders, muscle-related diseases, oncological disorders, ophthalmic diseases and others), [E] route of administration (intraarticular, intracerebellar, intradermal, intramuscular, intratumoral, intravenous, intravesical, intravitreal, subretinal and others), and [F] key geographical regions (US, EU5 and rest of the world). Chapter 21 provides insights on viral vector manufacturing, highlighting the steps and processes related to manufacturing and bioprocessing of vectors. In addition, it features the challenges that exist in this domain. Further, the chapter provides details on various players that offer contract manufacturing services for viral and plasmid vectors. Chapter 22 provides a glimpse of the gene therapy supply chain. It discusses the steps for implementing a robust model and provides information related to the global regulations for supply chain. Moreover, the chapter discusses the challenges associated with supply chain of gene therapies. In addition, it features the technological solutions that can be adopted for the management of gene therapy supply chain. Chapter 23 summarizes the overall report, wherein we have mentioned all the key facts and figures described in the previous chapters. The chapter also highlights important evolutionary trends that were identified during the course of the study and are expected to influence the future of the gene therapy market. Chapter 24 is a collection of interview transcripts of the discussions that were held with key stakeholders in this market. The chapter provides details of interviews held with Adam Rogers (CEO, Hemera Biosciences), Al Hawkins (CEO, Milo Biotechnology), Buel Dan Rodgers (Founder & CEO, AAVogen), Christopher Reinhard (CEO & Chairman, Gene Therapeutics (previously known as Cardium Therapeutics)), Michael Triplett (CEO, Myonexus Therapeutics), Robert Jan Lamers (CEO, Arthrogen), Ryo Kubota (CEO, Chairman & President, Acucela), Tom Wilton (CBO, LogicBio Therapeutics), Jeffrey Hung (CCO, Vigene Biosciences), Cedric Szpirer (Executive & Scientific Director, Delphi Genetics), Marco Schmeer (Project Manager) & Tatjana Buchholz (Marketing Manager, PlasmidFactory) and Molly Cameron (Corporate Communications Manager, Orchard Therapeutics). In addition, a brief profile of each company has been provided. Chapter 25 is an appendix, which provides tabulated data and numbers for all the figures included in the report. Chapter 26 is an appendix, which contains a list of companies and organizations mentioned in this report.Read the full report: ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.__________________________