An entire Hyf-type formate hydrogenlyase comple (Hyf-FHL) gene cluster was first discovered in a marine Vibrio species, Vibrio tritonius isolated from the digestive tract of the sea hare Aplysia kurodai [1]. The bacterium is also the first marine bacterium in which hydrogen production ability exceeds that of Escherichia coli under saline conditions [Sawabe et al. in Front Microbiol 4:414, 2013;Matsumura et al. in Int J Hydrog Energy 39:7270-7277, 2014;]. However, we were still unable to answer the evolutionary question as to why only minor groups of vibrios could maintain the FHL gene clusters and hydrogen (gas) production ability. Here, we set up comparative genomics and fermentative hydrogen production profiling using all 16 currently known Vibrionaceae species, which maintain FHL gene clusters and/or gas production, including 12 Vibrio and 4 Photobacterium species. Whole-genome comparison using complete genome sequences revealed unexpected diversity of FHL gene clusters, at least, with two new types of FHL gene clusters. Additional fermentative hydrogen profiling and structure modeling of FHLs showed formate detoxification as a part of formate and pH homeostasis could be one of the selective pressures in the evolution of FHL gene clusters responsible for high hydrogen production in vibrios.