Stabilized plasmid lipid particles (SPLP) consist of a single copy of DNA surrounded by a lipid bilayer. The particles are small ( approximately 100 nm), stable, monodisperse and have a low surface charge. A diffusible polyethylene glycol (PEG) coating attached to a lipid anchor is critical to the SPLP's functionality. The PEG-lipid exchanges out of the bilayer at a rate determined by the size of the lipid anchor. Here we show that SPLP can be prepared using a series of PEG-diacylglycerol lipids (PEG-S-DAGs). SPLP were prepared incorporating PEG-dimyristoylglycerol (C14), PEG-dipalmitoylglycerol (C16) or PEG-distearoylglycerol (C18) and the rate of PEG-lipid diffusion from the bi-layer determined using a FRET assay. SPLP pharmacokinetics confirm a correlation between the stability of the PEG-lipid component and circulation lifetime. PEG-S-DAGs with longer lipid anchors yield more stable SPLP particles with longer circulation half-lives yielding an increase in tumor delivery and gene expression. PEG-distearoylglycerol (C18) containing SPLP bypass so-called 'first pass' organs, including the lung, and elicit levels of gene expression in distal tumor tissue 100- to 1000-fold greater than that observed in any other tissue. The incorporation of PEG-S-DAG in SPLP confirms that small size, low surface charge and extended circulation lifetimes are prerequisite to the accumulation and tumor selective expression of plasmid DNA following systemic administration.