Anesthesia and analgesia are essential components for surgical procedures. While the neurotoxic effects of multiple anesthesia exposures during brain development are well established, the combined impact of multiple surgery with anesthesia and analgesia exposures on neurodevelopmental remains unknown. In this study, neonatal mice underwent multiple surgery with fentanyl and sevoflurane (MSFS) exposures on postnatal days 6, 8, and 10, resulting in attention deficit hyperactivity disorder (ADHD)-like hyperactivity, impulsive behavior, cognitive impairment, and fine motor dysfunction in adulthood. Additionally, MSFS exposures inhibited neurogenesis in the nucleus accumbens (NAc) by reducing neural stem cells (NSCs) proliferation and differentiation into neurons and astrocytes. Pre-administration of Vitamin K2 (VK2) 30 min before each MSFS procedure significantly mitigated the behavioral impairments and restored neurogenesis. RNA-sequencing revealed that MSFS treatment induced 75 up-regulated and 140 down-regulated differentially expressed genes (DEGs) in the NAc, while VK2 pre-administration resulted in 149 up-regulated and 56 down-regulated DEGs. Among these, 32 DEGs were down-regulated by MSFS but restored by VK2 and 12 DEGs were up-regulated by MSFS but down-regulated by VK2. To identify key regulatory genes modulated by VK2, we performed protein-protein interaction analysis using CytoHubba, which revealed 10 hub genes-DLGAP5, TPX2, KIF20B, PLK1, SGO1, GTSE1, ASPM, CDCA2, BUB1B, and NUSAP1-with critical roles in cell cycle, cell division and NSCs pathways. The expression of hub genes was validated by RT-qPCR and immunofluorescence staining. These findings suggest that MSFS-induces ADHD-like behaviors, cognitive impairment, fine motor dysfunction, impaired neurogenesis and altering genes expression involved in cell cycle, cell division and NSCs pathways, which are rescued by VK2. This study presents the clinically MSFS model for investigating neurodevelopmental toxicity and highlights VK2's potential as a neuroprotective agent in pediatric involving multiple surgery with anesthesia and analgesia.