FDA drug dosage optimisation guidelines signal clinical trial reform

Drug ApprovalPhase 2
FDA drug dosage optimisation guidelines signal clinical trial reform
Preview
Source: Pharmaceutical Technology
Credit: Shutterstock/ Ground Picture
In January, amidst calls to improve patient safety by optimizing licensed drug formulations, the FDA released a draft guidance that signalled a departure from the most commonly used method of identifying a new therapy’s ideal dosage.
Free Report
How is the Biopharmaceutical industry evolving?
2021 was a year of continued innovation and change in the Biopharmaceutical industry. As the COVID-19 pandemic continues to take its toll on businesses worldwide, it’s time to look for new ways to create value, prepare for the future, and remain competitive in the ever-changing landscape.
GlobalData’s expansive report examines the business environment and trends that shape the Biopharmaceutical industry. We highlight the most impactful emerging technologies, as well as the industry, regulatory, and macroeconomic factors that influence growth prospects.
Access the report to:
Benchmark the impact of major themes on the Biopharmaceutical industry.
Gain a deeper "on the ground" perspective through exclusive opinions and analysis from industry respondents.
Evaluate the effects of COVID-19 on the sector.
Download the full report to understand what to expect and how to align your strategies for success.
By GlobalData
FDA drug dosage optimisation guidelines signal clinical trial reform
Preview
Source: Pharmaceutical Technology
Submit
Country *
United Kingdom
United States
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia and Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo, The Democratic Republic of
The
Cook Islands
Costa Rica
Cote D"ivoire
Croatia
Cuba
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Falkland Islands (Malvinas)
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-bissau
Guyana
Haiti
Heard Island and Mcdonald Islands
Holy See (Vatican City State)
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iran, Islamic Republic of
Iraq
Ireland
Isle of Man
Israel
Italy
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Korea, Democratic People"s
Republic of
Korea, Republic of
Kuwait
Kyrgyzstan
Lao People"s Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Libyan Arab Jamahiriya
Liechtenstein
Lithuania
Luxembourg
Macao
Macedonia, The Former
Yugoslav Republic of
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia, Federated States of
Moldova, Republic of
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Territory, Occupied
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russian Federation
Rwanda
Saint Helena
Saint Kitts and Nevis
Saint Lucia
Saint Pierre and Miquelon
Saint Vincent and The Grenadines
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Georgia and The South
Sandwich Islands
Spain
Sri Lanka
Sudan
Suriname
Svalbard and Jan Mayen
Swaziland
Sweden
Switzerland
Syrian Arab Republic
Taiwan, Province of China
Tajikistan
Tanzania, United Republic of
Thailand
Timor-leste
Togo
Tokelau
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos Islands
Tuvalu
Uganda
Ukraine
United Arab Emirates
United States Minor Outlying
Islands
Uruguay
Uzbekistan
Vanuatu
Venezuela
Viet Nam
Virgin Islands, British
Virgin Islands, U.S.
Wallis and Futuna
Western Sahara
Yemen
Zambia
Zimbabwe
Submit
By clicking the Download Free Report button, you accept the terms and conditions and acknowledge that your data will be used as described in the GlobalData privacy policy
By downloading this Report, you acknowledge that we may share your information with our white paper partners/sponsors who may contact you directly with information on their products and services.
Visit our privacy policy for more information about our services, how we may use, process and share your personal data, including information on your rights in respect of your personal data and how you can unsubscribe from future marketing communications. Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.
Thank you.
Please check your email to download the Report.
The non-binding draft guidance gives insight into the agency’s current outlook and recommendations for standard and expedited programs in oncology. The agency proposes that pharma move away from the common maximum tolerated dose (MTD) to trial designs that prioritise drug dosage optimisation at different stages.
The focus on identifying the ideal drug dosage is not new. In 2021, the FDA granted Amgen’s (NASDAQ:AMGN) non-small cell lung cancer (NSCLC) drug Lumakras (sotorasib) an expedited approval, making it the first FDA-approved KRAS inhibitorKRAS inhibitor. Since this approval, KRAS inhibitorsKRAS inhibitors have risen in popularity with the FDA also approving Mirati Therapeutics’ (NASDAQ:MRTX) inhibitor Krazati (adagrasib) as a therapy for NSCLC. However, Amgen and other pharmaceutical companies have been criticised when they opted to choose the drug’s dosage based on the MTD model, which is commonly used in dose-finding trials.
Most drugs being developed now are more tailored to specific mechanisms of action compared to past drugs, says Dr. Gareth Veal, PhD, a professor of cancer pharmacology at Newcastle University. In the past, a drug may have only generally targeted cell replication. “However, now more therapies target specific abnormalities in tumors,” says Veal. For this reason, many industry experts say the MTD model is lacking in a modern context. “I think there’s absolutely no basis for using the maximum tolerated dose whatsoever,” says Dr. Mark Ratain, director of the Center for Personalized Therapeutics at the University of Chicago. The evidence of its superiority has been rarely proven for any drug, he adds.
While deliberating on Lumakras’s approval, the FDA requested that Amgen test the drug again at a lower dose to understand if the currently marketed formulation is unnecessarily high. The demand came amid concerns that the drug causes a slew of side effects such as nausea, diarrhea, and liver issues. In 2021, Amgen agreed to conduct a Phase II study (NCT04933695), which is supposed to complete in May 2024, according to Clinicaltrials.gov. If the new clinical study finds that a lower drug dose can achieve similar efficacy, the hope is that this could result in fewer side effects for patients. However, this would also lead to a revaluation of Amgen’s financial predictions for the drug, as a lower recommended drug dosage may generate less revenue.
What is drug dose optimisation?
The shift towards the drug dose optimisation model in cancer has been a long time coming. Advocates have pushed for the industry to get on board for the last few decades, because they say the MTD approach opens patients up to high levels of risk from toxicities. In standard and expedited programs, the FDA expects sponsors to adhere to the optimised dose model when appropriate.
In an optimised dose clinical trial, randomised dose-ranging allows companies to find the dose above which there is no evidence of incremental benefit, particularly if higher doses cause increased toxicities. In clinical trials, dose-ranging is testing different drug doses against each other to establish which works best.
According to the National Cancer Institute, the MTD is “the highest dose of a drug or treatment that does not cause unacceptable side effects.” For this approach, a “3+3” model is used where a study enrolls three patients into a given dose cohort. If a subject develops a dose limiting toxicity (DLT) at a specific dose, three more subjects join the same dose cohort, and if more than one in six subjects experience DLTs then the MTD has been exceeded.
The new FDA guidelines say that “the traditional MTD paradigm often does not adequately evaluate other data, such as low-grade symptomatic toxicities (i.e., grade 1-2), dose modifications, drug activity, dose- and exposure-response relationships, and relevant specific populations (defined by age, organ impairment, concomitant medications or concurrent illnesses).” They state that newer drugs like monoclonal antibodies and kinase inhibitors may benefit from a drug optimisation approach due to their different dose escalation profiles, compared to the cytotoxic chemotherapy drugs.
Dr. Serge Cremers, professor of pathology, cell biology, and medicine at Columbia University Irving Medical Center, New York, says the FDA’s preferred approach could be the right move for the industry, but worries about the possibility of underdosing patients “It might improve adherence in the long run, but it has to be a dose that is as effective as the MTD.”
Veal explains that secondary endpoints become more important when optimizing dosage. While planning a trial, the standard Phase I primary endpoint would still focus on safety, but there would be more of an emphasis on showing efficacy in secondary endpoints. He says that, in pharmacokinetic and pharmacodynamic studies, the optimised dose model may be able to predict exposures in the patient population. Thus, Veal also affirms the importance in using this model in paediatric patients to avoid possible long-term side effects.
Veal says adopting this dose optimisation model may mean it takes longer to plan a trial and recruit more patients per dose group. However, in some cases, fewer patients could be needed. For a Phase I study, Veal says, “You may hit your target three or four dose levels below where you’re seeing toxicity, which means that you saved several cohorts from potential toxic effects.”
Impact on the industry
Veal says that for a lot of pharmaceutical companies there is no “big drive to think about optimizing treatment” post-licensing. This often leaves the task to institutions to ensure that licensed drugs are used in their best formulation. And in some cases, studies show that the formulation could be significantly improved. The MTD model made sense for early cancer studies when most drugs had non-specific targets, says Veal.
Ratain says achieving the right dosage requires an understanding of clinical pharmacology and a randomised trial. “One takes knowledge and the other takes time and money.” The clinical pharmacology knowledge also isn’t present at smaller companies, he adds. However, this change has been looming for a long time as the FDA has backed previous dosage optimisation guidance from the International Conference on Harmonization (ICH) E4 guidance.
It’s not the cost that deters many companies, but the time lost from running an extra trial at another dose, says Ratain. “If your patent clock is ticking and it’s going to cost you at least a billion dollars in lost revenue to run that trial, you’re not going to do it unless you have to,” he says. With the guidance, Ratain says the FDA is taking a stand now and “saying ‘sorry, you have to do it.’”
Amgen has disclosed that the Lumakras study has been completed, but has yet to release any results. Ratain highlights that if results show the 240mg dose has equal efficacy to the currently marketed 960mg dose, this may cause Amgen a serious loss in revenue as patients require a lower drug quantity. This may also affect reimbursement agreements with other countries if the pricing changes dramatically. Ratain also poses the question: “If the price of Amgen’s drug goes down by 75%, who will pay full price for Mirati’s drug?” In general however, going forwards, he says companies must write protocols in a “smarter way”.
Free Report
How is the Biopharmaceutical industry evolving?
2021 was a year of continued innovation and change in the Biopharmaceutical industry. As the COVID-19 pandemic continues to take its toll on businesses worldwide, it’s time to look for new ways to create value, prepare for the future, and remain competitive in the ever-changing landscape.
GlobalData’s expansive report examines the business environment and trends that shape the Biopharmaceutical industry. We highlight the most impactful emerging technologies, as well as the industry, regulatory, and macroeconomic factors that influence growth prospects.
Access the report to:
Benchmark the impact of major themes on the Biopharmaceutical industry.
Gain a deeper "on the ground" perspective through exclusive opinions and analysis from industry respondents.
Evaluate the effects of COVID-19 on the sector.
Download the full report to understand what to expect and how to align your strategies for success.
By GlobalData
FDA drug dosage optimisation guidelines signal clinical trial reform
Preview
Source: Pharmaceutical Technology
Submit
Country *
United Kingdom
United States
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia and Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo, The Democratic Republic of
The
Cook Islands
Costa Rica
Cote D"ivoire
Croatia
Cuba
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Falkland Islands (Malvinas)
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-bissau
Guyana
Haiti
Heard Island and Mcdonald Islands
Holy See (Vatican City State)
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iran, Islamic Republic of
Iraq
Ireland
Isle of Man
Israel
Italy
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Korea, Democratic People"s
Republic of
Korea, Republic of
Kuwait
Kyrgyzstan
Lao People"s Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Libyan Arab Jamahiriya
Liechtenstein
Lithuania
Luxembourg
Macao
Macedonia, The Former
Yugoslav Republic of
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia, Federated States of
Moldova, Republic of
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Territory, Occupied
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russian Federation
Rwanda
Saint Helena
Saint Kitts and Nevis
Saint Lucia
Saint Pierre and Miquelon
Saint Vincent and The Grenadines
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Georgia and The South
Sandwich Islands
Spain
Sri Lanka
Sudan
Suriname
Svalbard and Jan Mayen
Swaziland
Sweden
Switzerland
Syrian Arab Republic
Taiwan, Province of China
Tajikistan
Tanzania, United Republic of
Thailand
Timor-leste
Togo
Tokelau
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos Islands
Tuvalu
Uganda
Ukraine
United Arab Emirates
United States Minor Outlying
Islands
Uruguay
Uzbekistan
Vanuatu
Venezuela
Viet Nam
Virgin Islands, British
Virgin Islands, U.S.
Wallis and Futuna
Western Sahara
Yemen
Zambia
Zimbabwe
Submit
By clicking the Download Free Report button, you accept the terms and conditions and acknowledge that your data will be used as described in the GlobalData privacy policy
By downloading this Report, you acknowledge that we may share your information with our white paper partners/sponsors who may contact you directly with information on their products and services.
Visit our privacy policy for more information about our services, how we may use, process and share your personal data, including information on your rights in respect of your personal data and how you can unsubscribe from future marketing communications. Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.
Thank you.
Please check your email to download the Report.
The content of the article does not represent any opinions of Synapse and its affiliated companies. If there is any copyright infringement or error, please contact us, and we will deal with it within 24 hours.
Indications
Targets
Chat with Hiro
Get started for free today!
Accelerate Strategic R&D decision making with Synapse, PatSnap’s AI-powered Connected Innovation Intelligence Platform Built for Life Sciences Professionals.
Start your data trial now!
Synapse data is also accessible to external entities via APIs or data packages. Empower better decisions with the latest in pharmaceutical intelligence.