Human pluripotent stem cell (hPSC)-derived therapies are a realistic possibility for numerous disorders, including Parkinson's disease. While generating replacement neurons is achievable, immunosuppressive drug challenges, to prevent rejection, remain. Here we adopted a hPSC line (termed H1-FS-8IM), engineered to overexpress 8 immunomodulatory transgenes, to enable transplant immune evasion. In co-cultures, H1-FS-8IM PSC-derived midbrain neurons evaded rejection by T lymphocytes, natural killer cells, macrophages, and dendritic cells. In humanized mice, allogeneic H1-FS-8IM neural grafts evaded rejection, while control hPSC-derived neural grafts evoked activation of human immune cells, elevated inflammatory cytokines in blood and cerebrospinal fluid, and caused spleen and lymph node enlargement. H1-FS-8IM neural grafts retained functionality, reversing motor deficits in Parkinsonian rats. Additional incorporation of a suicide gene into the H1-FS-8IM hPSC line enabled proliferative cell elimination within grafts. Findings demonstrate feasibility of generating a population-wide applicable, safe, off-the-shelf cell product, suitable for treating diseases for which cell-based therapies are a viable option.