Bacterial toxins play a critical role in the virulence of many pathogens, leading to serious diseases such as tetanus, diphtheria, botulism, and entrotoxemia. As key virulence factors, these toxins cause significant tissue damage and disease manifestations in infected hosts. Vaccination against these toxins through toxoid vaccines, composed of inactivated forms of the toxins, represents a vital strategy for preventing toxin-mediated diseases. However, creating effective toxoid vaccines necessitates meticulous detoxification processes that ensure the loss of toxicity while retaining the immunogenic properties inherent in the native toxins. This review offers a comprehensive evaluation of the diverse methodologies employed for detoxifying bacterial toxins, highlighting their advantages, limitations, and implications for vaccine development. By detailing comparisons of efficacy, stability, residual toxicity, and clinical applicability, we demonstrate that while traditional methods utilizing chemical reagents (such as formaldehyde) remain widely used, emerging technologies like genetic inactivation and protein engineering present significant advantages. These innovations promise to advance the development of durable and irreversible toxoid vaccines that protect public health and contribute to future vaccine formulation improvements. Ultimately, this knowledge synthesis aims to guide future research efforts and facilitate the design of safer and more effective toxoid vaccines to combat the public health threats posed by toxin-producing bacteria.