ETHNOPHARMACOLOGICAL RELEVANCESaffron is derived from the dried stigmas of Crocus sativus L., which was considered by ancient nations for food and medicinal purposes. In traditional medicine, the therapeutic use of Crocus sativus includes antispasmodic, antitussive and expectorant.AIM OF THE STUDYMitochondrial fusion, fission, biogenesis, and mitophagy are essential processes for maintaining mitochondrial dynamics in response to cellular stress. The primary objective of this research was to examine how crocin affected the levels of important mitochondrial regulators, including Drp1, Pgc1α, Nrf1, and Mfn2, in the lung tissue of ovalbumin-sensitized mice.MATERIALS AND METHODSA total of fifty male BALB/C mice were randomly assigned to five unique groups (n = 10 for each group), including the control group, ovalbumin-sensitized group (OVA), OVA group treated with 30 mg/kg of crocin, OVA group treated with 60 mg/kg of crocin, and OVA group treated with 1 mg/kg of dexamethasone. Post-sensitization and ovalbumin challenge, mice lung tissues were evaluated for the expression of Drp1, Pgc1α, Nrf1, and Mfn2 mRNA levels using real-time PCR as well as histopathological assessments.RESULTSIn the OVA group, there was a significant elevated in inflammatory cells such as eosinophils, neutrophils, macrophages, and lymphocytes; however, crocin (both concentrations) and dexamethasone intervention showed significant inhibitory effects (P < 0.01 to P < 0.001). Moreover, an increase in the expression of Drp1, Pgc1α, and Nrf1 levels was seen in the OVA group, while crocin and dexamethasone showed protective benefits (P < 0.05 to P < 0.001). Furthermore, the levels of Mfn2 were reduced in the lung tissue of mice exposed to ovalbumin, but this decrease was reversed by crocin 60 (P < 0.05) and dexamethasone treatment (P < 0.001).CONCLUSIONIn mice with OVA sensitization, the balance of mitochondrial dynamics in lung tissue was disrupted, but intervention of crocin identified to have a protective effect.