Q3 · MEDICINE
ArticleOA
Author: Shen, Ye ; Wang, Yanan ; Zeng, Wen ; Nan, Tiegui ; Ren, Zhenli ; Ma, Ying ; Kang, Liping ; Chen, Tong ; Cui, Guanghong ; Fang, Wentao ; Ma, Xiaohui ; Zhang, Yan ; Zhan, Zhilai ; Wang, Ling ; Zhao, Yujun ; Lai, Changjiangsheng ; Huang, Luqi ; Lin, Huixin ; Tang, Jinfu ; Guo, Juan
Background:The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known, traditional Chinese medicine. Tanshinones are active compounds that accumulate in the periderm, resulting in red-colored roots. However, lines with orange roots have been observed in cultivated fields. Here, we performed metabolome and transcriptome analyses to investigate the changes of orange-rooted Danshen.
Methods:Metabolome analysis was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-Tof–MS) to investigate the metabolites variation between orange Danshen and normal Danshen. RNA sequencing and KEGG enrichment analysis were performed to analyzing the differentially expressed genes between orange-rooted and normal Danshen.
Results:In total, 40 lipophilic components were detected in metabolome analysis, and seven compounds were significantly decreased in the orange Danshen, including the most abundant active compounds, tanshinone IIA and tanshinone I in normal Danshen. Systematic analysis of transcriptome profiles revealed that the down-regulated genes related to catalytic dehydrogenation was not detected. However, two genes related to stress resistance, and four genes related to endoplasmic reticulum (ER)-associated degradation of proteins were up-regulated in orange Danshen.
Conclusions:Decreases in the content of dehydrogenated furan ring tanshinones such as tanshinone IIA resulted in phenotypic changes and quality degradation of Danshen. Transcriptome analysis indicated that incorrect folding and ER-associated degradation of corresponding enzymes, which could catalyze C15-C16 dehydrogenase, might be contributed to the decrease in dehydrogenated furan ring tanshinones, rather than lower expression of the relative genes. This limited dehydrogenation of cryptotanshinone and dihydrotanshinone I into tanshinones IIA and I products, respectively, led to a reduced quality of Danshen in cultivated fields.