PURPOSE OF REVIEWA deeper understanding of the communication network between the gut microbiome and the central nervous system, termed the gut-brain axis (GBA), has revealed new potential targets for intervention to prevent the development of neurodegenerative disease associated with tramatic brain injury (TBI). This review aims to comprehensively examine the role of GBA post-traumatic brain injury (TBI).RECENT FINDINGSThe GBA functions through neural, metabolic, immune, and endocrine systems, creating bidirectional signaling pathways that modulate brain and gastrointestinal (GI) tract physiology. TBI perturbs these signaling pathways, producing pathophysiological feedback loops in the GBA leading to dysbiosis (i.e., a perturbed gut microbiome, impaired brain-blood barrier, impaired intestinal epithelial barrier (i.e., "leaky gut"), and a maladaptive, systemic inflammatory response. Damage to the CNS associated with TBI leads to GI dysmotility, which promotes small intestinal bacterial overgrowth (SIBO). SIBO has been associated with the early stages of neurodegenerative conditions such as Parkinson's and Alzheimer's disease. Many of the bacteria associated with this overgrowth promote inflammation and, in rodent models, have been shown to compromise the structural integrity of the intestinal mucosal barrier, causing malabsorption of essential nutrients and further exacerbating dysbiosis. TBI-induced pathophysiology is strongly associated with an increased risk of neurodegenerative diseases, including Parkinson's and Alzheimer's diseases, which represents a significant public health burden and challenge for patients and their families. A healthy gut microbiome has been shown to promote improved recovery from TBI and prevent the development of neurodegenerative disease, as well as other chronic complications. The role of the gut microbiome in brain health post-TBI demonstrates the potential for microbiome-targeted interventions to mitigate TBI-associated comorbidities. Promising new evidence on prebiotics, probiotics, diet, and fecal microbiota transplantation may lead to new therapeutic options for improving the quality of life for patients with TBI. Still, many of these preliminary findings must be explored further in clinical settings. This review covers the current understanding of the GBA in the setting of TBI and how the gut microbiome may provide a novel therapeutic target for treatment in this patient population.