To successfully infect and persist within its host, HIV-1 utilizes several immunosuppressive motifs within its gp41 envelope glycoprotein to manipulate and evade the immune system. The transmembrane domain (TMD) of gp41 downregulates T-cell receptor (TCR) signaling through a hitherto unknown mechanism. Interactions between TMDs within the membrane milieu have been shown to be typically mediated by particular amino acids, such as interactions between basic and acidic residues and dimerization motifs as GxxxG. The HIV-1 TMD exhibits both a polar arginine (Arg(696)) residue and a GxxxG motif, making them ideal candidates for mediators of TMD-TCR interaction. Using a primary T-cell activation assay and biochemical and biophysical methods, we demonstrate that the gp41 TMD directly interacts with TMDs of the TCR and the CD3 coreceptors (δ, γ, and ε) within the membrane, presumably leading to impairment of complex assembly. Additionally, we reveal that although Arg(696) does not affect TMD immunosuppression, the GxxxG motif is crucial in mediating gp41's TMD interaction with the CD3 coreceptors of the TCR. These findings suggest that compared with other gp41 immunosuppressive motifs, the gp41 TMD has multiple targets within the TCR complex, suggesting less susceptibility to evolutionary pressure and consequently being advantageous for the virus over the host immune response. Furthermore, as the GxxxG motif mediates interactions of the gp41 TMD with multiple receptors, it emerges as an attractive drug target. This multitarget inhibitory mechanism might be a strategy utilized by HIV to interfere with the function of additional host receptors.