Milk production traits in sheep are influenced by complex genetic factors, and understanding these traits requires the identification of candidate genes under selection. This study employed two methods, FST and XP-EHH, to identify selection signatures and candidate genes associated with milk production traits in sheep. For this purpose, 9 different breeds from the Sheep HapMap dataset generated by the International Sheep Genomics Consortium (ISGC) based on analysis of the Ovine SNP50 BeadChip were used. The dairy breeds included Brown East Friesian (n = 39), Milk Lacaune (n = 103), Chios (n = 23), Churra (n = 120), and Comisana (n = 24), while the non-dairy breeds included Afshari (n = 37), Moghani (n = 34), Galway (n = 49), and Australian Suffolk (n = 109). Genomic regions in the top 0.1 percentile of FST values revealed 71 genes, while regions with the highest positive XP-EHH values identified 69 genes. Five overlapping genes-DHRS3, TNFRSF1B, AADACL4, ARHGEF11, and LRRC71-were detected by both methods, highlighting their relevance to milk production. Several candidate genes in regions identified from FST, such as PER2, SH3PXD2A, TMEM117, DDX6, PDCD11, CALHM2, and CALHM3, have been previously associated with milk production traits. Notably, CRABP2, PEAR1, PGM1, ALG6, COX15, and OAT were identified in regions with high XP-EHH values in the dairy group. Gene ontology analysis indicated that the identified genes are enriched in pathways related to chemokine receptor activity, gap junction channel activity, and gap junction-mediated intercellular transport, as well as cellular components like the connexin complex. Further studies on these genes may improve understanding of the genetic architecture of milk production traits in sheep.