Global omics offer extensive insights into the diversity of essential biomolecules across various plant developmental stages. Despite advancements in high-throughput technologies, the integrated analysis of global omics such as proteomics, transcriptomics, and metabolomics, is yet to be fully explored in fruits of Capsicum species. In this study, we used an integrated omics approach to identify proteins involved in fruit development, and metabolite biosynthesis in the placenta and pericarp tissues of two contrasting genotypes belonging to ghost chili (Capsicum chinense) and C. annuum. The mass spectrometry analysis identified a total of 4,473 and 2,012 proteins from the pericarp and placenta tissues of Capsicum fruits. We observed expression of developmental stage-specific proteins, such as kinases, transferases, ion transporters, F-box proteins, and transcription factors that were enriched in the biosynthesis of primary and secondary metabolites. The abundance of these proteins corresponded with RNAseq data. Key proteins related to capsaicinoids biosynthesis, such as Acyltransferase 3, 3-oxoacyl-[acyl-carrier protein], 4-coumaroyl co-A ligase, and 3-ketoacyl-coA synthase 3, were identified in placenta of highly pungent ghost chili, along with J-domain proteins and transcription factors such as MYB101, MYB 14-like, bHLH112, NAC, and Cyt p450 CYP82D47, suggesting their role in capsaicinoids and secondary metabolites biosynthesis. Further, we observed a correlation of the expression of genes and proteins with the abundance of primary and secondary metabolites, such as carbohydrates, alcohols, fatty acids, phenolics, glycerides, polyamines, and amino acids. Our findings provide a novel multiomics resources for future functional studies, with potential applications in breeding programs.Graphical AbstractSupplementary InformationThe online version contains supplementary material available at 10.1007/s12298-025-01581-7.