PURPOSETo investigate the impact of Butea monosperma (BM) bark extract on the osteogenic differentiation potential of rat adipose-derived mesenchymal stem cells (rADMSCs) and to elucidate the involvement of Wnt/β-catenin pathway in mediating this osseous effect.METHODSCharacterizations (antioxidant assays, FTIR and LC/MS analyses) and docking studies (in silico) were performed to evaluate the presence of phytochemicals in the BM extract and their binding capacity to that of the frizzled receptor. rADMSCs were isolated and characterised for its differentiation potential of osteogenesis for stemness. Dose fixation, cytotoxicity, osteogenic differentiation (calcium, mineral deposition, alkaline phosphatase and osteocalcin) and gene expression (osteocalcin, Col1, osteonectin, Bmp2, Runx2, Wnt2, and β-catenin-14 and 28 days) of the extract were also evaluated in vitro.RESULTSFTIR and LC/MS analyses unveiled the phytochemicals in the extract and with docking studies confirmed their interaction with the frizzled receptor of Wnt/β-catenin pathway. rADMSCs were isolated and differentiated in the presence of the osteogenic induction medium. Dose fixation studies, cytotoxicity and cell viability assessments demonstrated the phytochemicals concentration-dependent cytotoxicity. The presence of specific bone markers highlighted the osteogenic differentiation potential of the phytochemicals. Furthermore, gene expression studies of rADMSCs depicted a heightened bone-forming capacity potentially facilitated by the activation of Wnt/β-catenin pathway.CONCLUSIONThe phytochemicals of BM promoted the osteogenic differentiation of rADMSCs through the activation of the signalling Wnt/β-Catenin pathway, as evidenced by the significant upregulation of early and late bone markers. The phytochemicals may therefore be positioned as promising therapeutic agents for enhancing bone regeneration, offering new avenues for regenerative medicine.