INTRODUCTIONIn congenital aniridia caused by mutations in paired box 6 (PAX6), PAX6 influences the migration and differentiation of limbal epithelial cells (LECs), thereby playing a pivotal role in aniridia-associated keratopathy. The antidepressants ritanserin and duloxetine affect PAX6 expression in LECs. Limbal stromal cells, which support limbal epithelial stem cells, are crucial in the limbal stem cell niche. This study explores how ritanserin and duloxetine influence gene expression in primary human limbal stromal cells from subjects with congenital aniridia and from healthy subjects, in vitro.METHODSPrimary human limbal stromal cells from corneas affected by aniridia (AN-LSCs) (n = 8) and from healthy corneas (LSCs) (n = 8) were isolated and cultured in either low-glucose serum-free (LGSF) or normal-glucose serum-containing (NGSC) media. Cells were treated with 4 µM ritanserin or duloxetine for 24 h. Quantitative PCR (qPCR) and western blot were used to assess the expression of PAX6, FOSL2, TGF-β1, ACTA2A1, LUM, COL1A1, COL5A1, DSG1, FABP5 and ADH7.RESULTSIn AN-LSCs with LGSF-medium, ritanserin increased PAX6 messenger RNA (mRNA) (p = 0.007) and decreased TGF-β1 and FOSL2 mRNA levels (P = 0.005, P = 0.038). In addition, TGF-β1 protein levels decreased with both treatments (P = 0.02, P = 0.007), and FABP5 protein level increased, using ritanserin (P = 0.019). In LSCs with LGSF-medium, ACTA2A1 mRNA levels decreased using ritanserin and duloxetine (P = 0.028; P = 0.031), while FABP5 mRNA levels increased with ritanserin treatment (P = 0.003). Also, duloxetine use reduced α-SMA protein (P = 0.013) and increased FABP5 protein levels (P = 0.029). In LSCs with NGSC-medium, ritanserin elevated LUM, FABP5 and ADH7 mRNA and protein levels (P = 0.025, P = 0.003, P = 0.047, P = 0.024, P = 0.013, P = 0.039).CONCLUSIONSThe results of our study confirmed that the antipsychotropic drugs ritanserin and duloxetine alter PAX6 and TGF-β1 gene expression in AN-LSCs cultured in LGSF-medium. These drugs were found to have an impact on retinoic acid signaling pathways and keratocyte characteristic markers both in LSCs and AN-LSCs, using different culture media.