AbstractObjectivesWe aimed to analyse the interplay between impaired iron uptake and β-lactamases on cefiderocol resistance in Pseudomonas aeruginosa.MethodsThirty-one transferable β-lactamases and 16 intrinsic P. aeruginosa AmpC (PDC) variants were cloned and expressed in wild-type (PAO1) and iron uptake-deficient (PAO ΔpiuC) P. aeruginosa backgrounds. MICs of cefiderocol and antipseudomonal β-lactams were determined by reference broth microdilution.ResultsRelative to PAO1, deletion of piuC caused a specific 16-fold decrease in cefiderocol activity but negligible effects on the activity of other β-lactams. Among transferable β-lactamases, SHV-12, KPC Ω-loop mutants, NDMs and OXA-15 showed cefiderocol MIC values above the clinical breakpoint (2 mg/L) when expressed in PAO1. When expressed in PAO ΔpiuC, these and the transformants harbouring PER-1, VEB-1, KPC-2, KPC-3, VIM-1, CMY-2, OXA-2 and OXA-14 showed increased MIC values from 16 to >256 mg/L. The PDC variants carrying the Ω-loop changes ΔP215-G222 (PDC-577), E219K (PDC-221 and PDC-558) and the H10 helix change L293P (PDC-219) had the greatest impact on cefiderocol resistance, with MICs of 2–4 mg/L in PAO1 and of up to 32–64 mg/L in PAO ΔpiuC. Widespread enzymes such as GES, CTX-M-9, CTX-M-15, VIM-2-like enzymes, IMPs, DHA-1, FOX-4, OXA-10, OXA-48 and the other PDC variants tested had weaker effects on cefiderocol resistance.ConclusionWe add evidence about the effect of the interplay between iron uptake and β-lactamases on the acquisition of cefiderocol resistance in P. aeruginosa. These findings may help to anticipate the emergence of resistance and optimize the use of cefiderocol against P. aeruginosa infections.