BACKGROUNDExtracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.METHODS AND RESULTSThis study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions. The cryopreserved cadFibroblasts were evaluated for cell morphology, confluence, viability, cell adhesion, colony-forming units, proliferation, population doubling time migration (scratch wound healing assay), and quantitative real-time PCR for gene expression analyses when cultivated on surfaces coated with ECM proteins. A significantly (p < 0.05) higher cellular responses regarding cell adhesion ability, proliferation, CFUs, migration rate and differential gene expression of cell adhesion (β integrin, β tubulin, and E-cadherin) associated marker genes were observed with adhesion ECM proteins (laminin, fibronectin, and vitronectin) than with structural ECM proteins (collagen-IV and RTC). RT-PCR analyses revealed ECM-dependent differential template expression in cultured post-thawed cadFibroblasts.CONCLUSIONSOverall, while comparing different types of ECM proteins, adhesion ECM proteins (laminin, fibronectin, and vitronectin) provide a relatively better niche that supports adhesion, growth, proliferation, and migration of post-thawed cadFibroblasts compared with structural ECM proteins (collagen-IV and RTC) and the culture without ECM. The outcomes of the present study are crucial for replicating physiological conditions in experimental models for future research involving cryopreserved dermal fibroblasts or any other cell type, which can lead to future developments in tissue engineering and regenerative medicine.