BackgroundMLC901 is a phytopharmaceutical comprising significant compounds that can induce microenvironments conducive to the proliferation and specialization of neural cell progenitors. This study investigates the impact of administering MLC901, reducing the expression of NG2 and caspase-3 and increasing IL-10 levels, as well as histopathological and motor function, after severe spinal cord injury (SCI) in the chronic phase.MethodsThe study employed a randomized post-test-only control group design conducted between February and April 2023 at the Integrated Biomedical Laboratory. The participants in this study were categorized into three distinct groups: normal control, negative control, and therapy. A cohort of 18 rats was utilized for the study, with each group assigned a random allocation of six rats as subjects.ResultsThe findings demonstrated a statistically significant disparity in the average NG2 expression (-52.00 ± 20.03; p ≤ 0.05), as well as Caspase-3 expression (-94.89 ± 8.57; p ≤ 0.05), which exhibited a lower magnitude. The levels of IL-10 (8.96 ± 3.98; p ≤ 0.05) were observed to be higher, along with an elevation in BBB score (7.67 ± 0.89; p ≤ 0.05), which was more pronounced in the treatment group compared to the negative control group. The cut-off point for cavitation diameter is determined to be 114.915 μm, exhibiting a sensitivity and specificity of 100%. The area under curve (AUC) value is 1.0. The administration of MLC901 demonstrated a strong positive correlation with the increase in IL-10 levels (B 8.968; p ≤ 0.05), as well as a substantial negative correlation with the decrease in Caspase-3 expression (B -52.000; p ≤ 0.05) and NG2 expression (B -94.892; p ≤ 0.05). The administration of MLC901 via the upregulation of NG2 and Caspase-3 significantly increased the Basso, Beattie, and Bresnahan (BBB) scores.ConclusionsMLC901 positively affects motor and histopathological outcomes in the chronic phase of severe SCI in the Wistar rat model. These benefits are believed to be achieved by suppressing gliosis, neuroapoptosis, and neuroinflammation processes.